Signatures of a population bottleneck can be localised along a recombining chromosome

Céline Becquet, Peter Andolfatto
Bioinformatics and Modelling, INSA of Lyon
Institute for Cell, Animal and Population Biology, Edinburgh

celine_becquet@netcourrier.com

June, 2003
Introduction

Distinguishing between Bottleneck and Hitchhiking

- Natural genetic variability
 - *Neutral Theory (Kimura 1968, 1983)*
 - Neutral mutations, Recombination, Genetic drift
 - *Natural selection affects variability*
 - Localised effects
 - Functional genomic regions can be detected
 - *Demography also affects variability*
 - The entire genome is affected in a similar manner
Introduction

Tests of neutrality

- Detect Departure from the Standard neutral model (SNM)
 - *Neutral mutation*
 - *Sampling from panmictic population*
 - *Constant population size*

- Measure variability on
 - *Single locus*
 - *Multi-locus*

- Demography affects these tests as well
 - *But genome wide vs. localised effects*
 - Enable detection of departure from the SNM
Introduction

Data from Drosophila and Humans

Show complicated demographic history

- Origin in Africa
- Differentiation between non-African and African pops.
 - Linkage disequilibrium (LD) higher in non-African pops.

- Suggest an “out of Africa” bottleneck
Introduction

Our work: detecting bottleneck’s signature

- Simulate gene genealogies
- Under various models of bottlenecks
 - Based on “best guess” parameters for both Drosophila and humans
- Observe
 - Behaviour of some test of the SNM
 - Patterns of variability across the recombining chromosome

 How often a bottleneck will lead us to the incorrect conclusion that selection has occurred in a genomic region of interest?
Material & methods

Bottleneck Simulations

Coalescent simulations

- Hudson (2002) Program
 - Standard Neutral Model (SNM)
 - Simulations based on
 - $\theta = 4N\mu L$
 - S: number of segregating sites
 - Finite-sites recombination model
 - $\rho = 4NrL$
 - Parameters of bottleneck
 - Number of intervals of population size changes
 - Reduced population size (N_b)
 - Starting time (T_b)
 - Duration of the bottleneck (T)
Simple Step Bottleneck

Population Size

Time

N0

Nb

Tb

T
Material & methods

Bottleneck Simulations

- Drosophila populations
 - \(N_0 = 5,000,000 \) individuals
 - Average variability reduced by 15% or 50%
 - Population mutation rate
 - Single locus: \(\theta = 15 \) (500 recombining bp)
 - Large survey region
 - \(\theta = 1200 \) over 40,000 recombining bp
 - Windows of 500 bp, 50 bp step
 - Recombination rate: \(\rho = 3\theta \) or \(15\theta \)
 - Sample size of 15 chromosomes
Material & methods

Bottleneck Simulations

- Human populations
 - $N_0 = 12,000$ individuals
 - Variability reduced by 35%
 - Population mutation rate
 - Single locus tests: $\theta = 3$ over 2500 recombining bp
 - $\rho = \theta$
 - Sample size of 15 chromosomes
Material & methods

Statistical tests

- **Level of polymorphism** *(Kreitman and Hudson’s 1991)*
 - Number of segregating sites \((S)\)
 - Low level of diversity expected under a **Bottleneck**
 - One-tailed test at 5%
Material & methods

Statistical tests

- Frequency spectrum

 - *Tajima’s (1989) D*
 - Normalised difference between θ_W (Watterson 1975) and π (Tajima 1983)
 - $E(D)>0$, <0 or $=0$ under a bottleneck
 - One-tailed tests at 5% for +ve and -ve values

 - *Fay & Wu’s (2000) H*
 - $H = \pi - \theta_H$
 - -ve under selection
 - Can be affected by demography too
 - One-tailed test at 5%
Material & methods

Statistical tests

- **Linkage disequilibrium**
 - *Number of distinct haplotypes (K Strobeck 1987)*
 - Recent bottleneck or periodic bottlenecks \rightarrow small K
 - One-tailed test at 5%
 - *Frequency of the most frequent haplotype (f_{MFH})*
 - Recent bottleneck \rightarrow strong haplotype structure
 - One-tailed test at 5% on upper values
Material & methods

Statistical tests

- Statistical tests performed
 - Considering 15 chromosomes
 - 10,000 repetitions
 - Assuming no intragenic recombination

 So, statistics are conservative
Results: Single locus rejection probability

Step-recovery models for Drosophila

Rejection probability for single loci under step-recovery bottleneck models for *Drosophila* \((\rho = 3\theta) \).

<table>
<thead>
<tr>
<th>Bottleneck</th>
<th>(\theta/\theta_0)</th>
<th>(S) ((\mu), reject)</th>
<th>(K) ((\mu), reject)</th>
<th>(f_{MFH}) ((\mu), reject)</th>
<th>(D) ((\mu), reject 5%, 95%)</th>
<th>(H) ((\mu), reject)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent (T_b = 2000 \text{ ga})</td>
<td>0.82</td>
<td>40.1, 0.005</td>
<td>8.2, 0.15</td>
<td>0.28, 0.07</td>
<td>0.41, 0.001, 0.03</td>
<td>-1.28, 0.02</td>
</tr>
<tr>
<td>Old (T_b = 120,000 \text{ ga})</td>
<td>0.83</td>
<td>40.7, 0.005</td>
<td>10.1, 0.02</td>
<td>0.23, 0.03</td>
<td>0.36, 0.001, 0.03</td>
<td>-1.19, 0.02</td>
</tr>
<tr>
<td>Eqb. Pop.</td>
<td>0.81</td>
<td>39.3, 0.002</td>
<td>12.6, (<0.0001)</td>
<td>0.16, 0.001</td>
<td>-0.01, 0.001, 0.001</td>
<td>0.00, 0.01</td>
</tr>
<tr>
<td>Severe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent (T_b = 2000 \text{ ga})</td>
<td>0.50</td>
<td>24.3, 0.07</td>
<td>3.5, 0.96</td>
<td>0.55, 0.56</td>
<td>0.88, 0.04, 0.35</td>
<td>-3.94, 0.21</td>
</tr>
<tr>
<td>Old (T_b = 120,000 \text{ ga})</td>
<td>0.52</td>
<td>25.4, 0.06</td>
<td>5.9, 0.39</td>
<td>0.47, 0.36</td>
<td>0.69, 0.04, 0.27</td>
<td>-3.77, 0.19</td>
</tr>
<tr>
<td>Eqb. Pop.</td>
<td>0.50</td>
<td>24.5, 0.01</td>
<td>11.2, 0.0002</td>
<td>0.20, 0.002</td>
<td>-0.02, 0.01, 0.01</td>
<td>-0.01, 0.01</td>
</tr>
<tr>
<td>Ancestral</td>
<td>1.00</td>
<td>48.8, -</td>
<td>13.1, (<0.0001)</td>
<td>0.14, 0.0006</td>
<td>-0.01, 0.0003, 0.0008</td>
<td>0.05, 0.004</td>
</tr>
</tbody>
</table>

Simulations based on observed variability from the simulations with bottleneck.

Dispersal from Africa: 10-15 kya ~ 120,000 ga

Founding of North America pops.: < 400 ya ~ 2,000 ga
Results: Single locus rejection prob.

Step-recovery and single step models for Human

Rejection probability for single loci under different bottleneck models for Humans

<table>
<thead>
<tr>
<th>Bottleneck</th>
<th>(\theta/\theta_0)</th>
<th>(S) ((\mu), reject)</th>
<th>(K) ((\mu), reject)</th>
<th>(f_{MFH}) ((\mu), reject)</th>
<th>(D) ((\mu), reject 5%, 95%)</th>
<th>(H) ((\mu), reject)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent (T_b = 600) ga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step-Recovery</td>
<td>0.65</td>
<td>6.2, 0.09</td>
<td>3.8, 0.10</td>
<td>0.55, 0.08</td>
<td>0.42, 0.03, 0.16</td>
<td>-0.58, 0.12</td>
</tr>
<tr>
<td>Simple step</td>
<td>0.65</td>
<td>6.1, 0.09</td>
<td>3.6, 0.12</td>
<td>0.55, 0.08</td>
<td>0.56, 0.03, 0.19</td>
<td>-0.57, 0.12</td>
</tr>
<tr>
<td>Old (T_b = 2500) ga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step-Recovery</td>
<td>0.64</td>
<td>6.2, 0.08</td>
<td>4.3, 0.05</td>
<td>0.58, 0.07</td>
<td>-0.02, 0.06, 0.09</td>
<td>-0.55, 0.11</td>
</tr>
<tr>
<td>Simple Step</td>
<td>0.65</td>
<td>6.2, 0.08</td>
<td>3.9, 0.09</td>
<td>0.55, 0.07</td>
<td>0.40, 0.03, 0.15</td>
<td>-0.58, 0.11</td>
</tr>
<tr>
<td>Eqb. Pop.(^c)</td>
<td>0.65</td>
<td>6.3, 0.04</td>
<td>5.1, 0.01</td>
<td>0.49, 0.02</td>
<td>-0.05, 0.03, 0.04</td>
<td>0.02, 0.05</td>
</tr>
<tr>
<td>Ancestral(^d)</td>
<td>1.00</td>
<td>9.8, -</td>
<td>6.5, 0.01</td>
<td>0.39, 0.02</td>
<td>-0.04, 0.03, 0.04</td>
<td>0.01, 0.04</td>
</tr>
</tbody>
</table>

Between emergence of modern humans 2500 ga ~ 50 kya
And introduction of agriculture 600 ga ~12,000 ya
Results: Large survey region

Pattern of variability along a recombining seq.

Drosophila

Severe & old Bottleneck $\rho=3\theta$

Simulation with bottleneck

Simulation with equilibrium population
Results: Large survey region

Pattern of variability along a recombining seq.

Drosophila

Severe & old Bottleneck $\rho=3\theta$
Results: Large survey region

Pattern of variability along a recombining seq.

Drosophila
Severe & old Bottleneck $\rho=3\theta$
Results: Large survey region

Patterns of variability show

- Bottleneck increases
 - Variance of the statistics (except haplotype tests)
 - Physical scale of the LD
 - The extent to which genealogies are shared
Probability distribution of the size of the rejecting regions

Drosophila Severe & old Bottleneck

\[\rho = 3\theta \]

Simulation with equilibrium population

Simulation with bottleneck
Discussion

Interpretations of Significant tests

- Under a bottleneck, we observe
 - +ve D, -ve H; increased LD

- Data show
 - In Drosophila
 - D is not generally +ve
 - Our model may not fit reality
 - More -ve D in African pops.
 - Growth in the ancestor covers up evidence for bottleneck?
 - In Human
 - D not generally +ve
 - Inadequate sampling, pop growth, or pop structure?
 - More -ve D in African pops.
Discussion

Interpretations of Significant tests

- Comparison between African and non-African often show many significant haplotypes and Fay & Wu’s H tests
 - In Drosophila species (numerous examples)
 - In Human (OR, Gilad and Lancet 2003 and others)

- But our results suggest that
 - H and haplotype tests not conservative under pop. size changes
 - These observations could be interpreted as bottleneck signature
Discussion

Multi-locus analysis not optimal

- Heterogeneity argument used to argue for selection
 - In Droso. (Mousset et al. 2003, Andolfatto et al. 1999, Hudson et al. 1997, and others)
 - In Human (Kayser et al. 2003, and others)

- We show
 - Bottleneck increases
 - Variance of most statistics
 - Physical scale of LD across a chromosome
 - Observed heterogeneity in polymorphism patterns may be consistent with demography
Conclusion & Prospects

- **Demographic history is important**
 - Changes in population size may be common in the history of most species
 - Other models of demographic changes should also be studied

- **Finding evidence for selection may be difficult**
 - Need specific methods to distinguish demography from selection
Conclusion

& **Prospects**

- **Combining tests together?**
 - *The studied tests are too correlated*

- **Explicitly model bottleneck?**
 - *But unknown parameters*

- **Lazzaro and Clark (2003)***
Thanks

ICAPB, Edinburgh INSA, Lyon

Nick Barton Guillaume Beslon

Peter Andolfatto Jean-Michel Fayard

Nick Barton’s lab Hedi Soula

And all the 1rst floor
Working atmosphere?

Who hell is this?

Ugly boy

Sweet lips

The kid

Mouth from the south